

1

Руководство

администратора
Настройка, управление,

устранение проблем

SDLPlatform — решение для безопасной разработки,

объединяющее несколько open-source инструментов

статического анализа кода (SAST и SCA).

2

Содержание

• Введение

• Инструкция по установке

o Требования к системе………………………………………………………………………….. 3

o Установка в Docker (Docker Compose)………………………………………………………. 3

o Установка в Kubernetes ………………………………………………………………………... 5

• Управление пользователями

• Интеграция с CI/CD

o Интеграция с GitLab CI…………………………………………………………………………. 13

o Интеграция с Jenkins…………………………………………………………………………… 13

o Интеграция с другими CI/CD системами…………………………………………………….. 14

o Получение результатов сканирования………………………………………………………. 14

• Резервное копирование и восстановление данных

o Резервное копирование базы данных……………………………………………………….. 16

o Резервное копирование файлов конфигурации…………………………………………… 16

o Восстановление базы данных………………………………………………………………… 17

o Восстановление файлов конфигурации…………………………………………………….. 17

o Дополнительные рекомендации……………………………………………………………… 17

• Мониторинг и диагностика

o Журналирование………………………………………………………………………………… 18

o Системы мониторинга………………………………………………………………………….. 18

o Диагностика ошибок……………………………………………………………………………. 18

• Обновления и патчи

o Обновление приложения SDLPlatform………………………………………………………. 19

o Установка патчей безопасности………………………………………………………………. 19

o Проверка состояния после обновлений……………………………………………………... 20

o Откат обновлений……………………………………………………………………………….. 20

• Безопасность

o Настройка брандмауэра………………………………………………………………………... 21

o SSL-сертификаты……………………………………………………………………………….. 21

o Политики паролей………………………………………………………………………………. 21

o Аудит безопасности…………………………………………………………………………….. 21

• Часто задаваемые вопросы………………………………………………………………………… 22

• Техническая поддержка…………………………………………………………………………….. 22

3

Введение

SDLPlatform (Secure Development Lifecycle Platform) это программная платформа для организации

процесса безопасной разработки на стороне заказчика. Она объединяет инструменты статического

анализа безопасности исходного кода (SAST), анализа зависимостей (SCA) и проверки выполнения

правил кодирования (Linters), предоставляет веб-интерфейс для управления результатами

сканирования, приложениями и уязвимостями, а также помогает формализовать выполнение

требований ГОСТ Р 56939-2024.

Инструкция по установке

• Требования к системе

Минимальные и рекомендуемые системные требования:

o Операционная система: Linux (Ubuntu 24.04.1 LTS или выше)

o Процессор: 4 ядра

o Оперативная память: 8 GB RAM

o Свободное место: 50 GB

o Сетевое подключение: Требуется для установки и получения обновлений

• Установка Docker и Docker Compose

Убедитесь, что Docker и Docker Compose установлены:

sudo apt install -y ca-certificates curl gnupg lsb-release

sudo install -m 0755 -d /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg \

 | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg

sudo chmod a+r /etc/apt/keyrings/docker.gpg

echo \

 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.g

pg] \

 https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) stable" \

 | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt update

sudo apt install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin
docker-compose-plugin

systemctl enable --now docker

4

Для выполнения дальнейших шагов необходимо запросить файлы docker-

compose.yaml, .env.example и данные для подключения к репозиторию образов контейнеров

у технической поддержки

o Подключение к репозиторию

Для подключения к репозиторию с образами контейнеров платформы необходимо выполнить

docker login:

docker login registry.sdlplatform.ru -u <login> -p <personal_token>

При отсутствии подключения к DockerHub также необходимо выполнить:

docker login -u <login_dockerhub> -p <personal_token_dockerhub>

o Подготовка к развертыванию

Перед запуском необходимо подготовить файл с переменными окружения из .env.example

Обязательные переменные окружения в .env.example: - POSTGRES_PASSWORD — учетные данные для

PostgreSQL - MINIO_ROOT_USER и MINIO_ROOT_PASSWORD — учетные данные для MinIO (S3-

совместимое хранилище) - SECRET_KEY — секретный ключ для JWT-токенов - NOTIFICATIONS_ENABLED

- статус службы уведомлений по E-mail - TAG - версия приложения для установки (можно получить у

технической поддержки)

Необязательные, но возможные к изменению переменные окружения в .env.example: - SMTP_HOST -

адрес SMTP-сервера для отправки уведомлений - SMTP_PORT - порт SMTP-сервера для отправки

уведомлений - SMTP_USER - пользователь SMTP-сервера для отправки уведомлений - SMTP_PASSWORD -

пароль от пользователя SMTP-сервера для отправки уведомлений - SMTP_CONNECTION_TYPE - тип

шифрования при подключении к SMTP-серверу (SSL/TLS) - APPSCREENER_URL - URL приложения

AppScreener для подключения - APPSCREENER_TOKEN - токен для подключения к приложению AppScreener

- PTAI_URL - URL приложения PT AI для подключения - PTAI_TOKEN - токен для подключения к

приложению PT AI - PORT - порт публикации веб-интерфейса приложения - POSTGRES_USER - пользователь

БД - POSTGRES_DB - наименование БД

Необходимо сохранить docker-compose.yaml и .env в одну рабочую директорию, из которой

планируется управление платформой

o Запуск платформы

Для первого запуска системы выполните следующую команду:

Этот шаг может занять до 15 минут в зависимости от пропускной способности сети и

производительности системы, но это только для первого запуска.

sudo docker compose up -d

5

Платформа включает следующие сервисы: - postgres — база данных PostgreSQL - minio — S3-

совместимое объектное хранилище - nats — брокер сообщений для асинхронной коммуникации -

redis — кеш и хранилище временных данных - backend — FastAPI-приложение с REST API -

frontend — веб-интерфейс - nginx — обратный прокси-сервер - ml_service — сервис

машинного обучения для анализа уязвимостей - butler_service — сервис управления задачами

сканирования - worker_* — воркеры для различных сканеров (semgrep, bandit, gosec, codeql, trivy,

и др.)

o Обновление

Для обновления необходимо заменить переменную TAG в .env на новую версию ПО

Скачать обновленные образы контейнеров:

docker compose pull

Перезапустить платформу:

docker compose down

docker compose up -d

• Установка в Kubernetes

Helm chart и образы размещены в Harbor registry.sdlplatform.ru.

Требования:

o Kubernetes кластер

o kubectl

o Helm 3 с поддержкой OCI (Helm 3.8+)

o Ingress controller: NGINX

o Storage: используется default StorageClass кластера

o Доступ к registry.sdlplatform.ru (учётные данные robot account с правами pull в

project sdlplatform)

Подготовка доступа к registry

Для скачивания образов и chart используйте учётные данные robot account, которые вам предоставил

поставщик:

o <name> — имя robot account (часть после robot$sdlplatform+, например pull-client)

o <ROBOT_PASSWORD> — токен robot account, выданный при создании учётной записи

1) Выполните логин в registry (для Helm OCI):

6

helm registry login registry.sdlplatform.ru -u 'robot$sdlplatform+<name>' -p '

<ROBOT_PASSWORD>'

Если токен содержит спецсимволы:

printf '%s' '<ROBOT_PASSWORD>' | helm registry login registry.sdlplatform.ru -

u 'robot$sdlplatform+<name>' --password-stdin

2) Создайте imagePullSecret (чтобы kubelet мог загружать образы):

kubectl create namespace sdlplatform || true

kubectl -n sdlplatform create secret docker-registry registry-secret \

 --docker-server=registry.sdlplatform.ru \

 --docker-username='robot$sdlplatform+<name>' \

 --docker-password='<ROBOT_PASSWORD>'

3) Если в кластере возникает ошибка 429 Too Many Requests из-за ограничений DockerHub,

добавьте учётные данные DockerHub отдельным secret:

o <DOCKERHUB_USER> — логин на hub.docker.com

o <DOCKERHUB_TOKEN_OR_PASSWORD> — access token или пароль от Docker Hub

kubectl -n sdlplatform create secret docker-registry dockerhub-secret \

 --docker-server=docker.io \

 --docker-username='<DOCKERHUB_USER>' \

 --docker-password='<DOCKERHUB_TOKEN_OR_PASSWORD>'

Установка релиза

Релизная версия соответствует git-тэгу, например 1.3.0. Установка и все последующие обновления

выполняются через файл values-prod.yaml.

Подготовьте values-prod.yaml:

cat > values-prod.yaml <<'YAML'
global:
 imageRegistry: registry.sdlplatform.ru/sdlplatform/
 imageTag: "1.3.0"
 imagePullSecrets:
 - registry-secret
 - dockerhub-secret

ingress:
 host: sdlplatform.example.com

config:
 data:

7

 NOTIFICATIONS_ENABLED: "false"

SMTP_HOST: ""

 SMTP_PORT: ""

 SMTP_USER: ""

 SMTP_CONNECTION_TYPE: ""

 APPSCREENER_URL: ""

 PTAI_URL: ""

 PORT: "8000"

secrets:

 stringData:

 SMTP_PASSWORD: ""

 APPSCREENER_TOKEN: ""

 PTAI_TOKEN: ""

YAML

Запустите установку через helm:

helm upgrade --install sdlplatform oci://registry.sdlplatform.ru/sdlplatform/s

dlplatform \

 --version 1.3.0 \

 --namespace sdlplatform \

 --create-namespace \

 -f values-prod.yaml

Во время установки/обновления backend автоматически применяет миграции БД (Alembic) через

initContainer. Первый запуск может занять 1–2 минуты.

Переменные окружения

Backend получает переменные из ConfigMap sdlplatform-config и Secret sdlplatform-secrets.

В ConfigMap задайте:

o NOTIFICATIONS_ENABLED (true/false)

o SMTP_HOST, SMTP_PORT, SMTP_USER, SMTP_CONNECTION_TYPE (tls/ssl)

o APPSCREENER_URL, PTAI_URL (опционально)

o PORT (опционально, по умолчанию — 80)

В Secrets задайте:

o SMTP_PASSWORD

o APPSCREENER_TOKEN, PTAI_TOKEN (опционально)

ConfigMap и Secret создаются chart’ом. Для изменения настроек отредактируйте values-

prod.yaml и выполните helm upgrade с этим файлом.

8

Обновление релиза

Укажите версию:

RELEASE_VERSION=1.3.1

sed -i -E 's/^(imageTag:).*$/\1"'"$RELEASE_VERSION"'"/' values-prod.yaml

Выполните обновление:

helm upgrade --install sdlplatform oci://registry.sdlplatform.ru/sdlplatform/s

dlplatform \

 --version "$RELEASE_VERSION" \

 --namespace sdlplatform \

 -f values-prod.yaml

Удаление

helm uninstall sdlplatform -n sdlplatform

9

Управление пользователями

Добавление пользователя через API

Для создания пользователя через API используйте эндпоинт /api/v1/users/ (требуется токен

суперпользователя).

Добавление пользователя напрямую в БД

Для добавления пользователя напрямую в базу данных PostgreSQL выполните следующие шаги:

1. Сгенерируйте bcrypt-хеш пароля:

docker compose exec backend python -c "from passlib.context import CryptContex

t; pwd_context = CryptContext(schemes=['bcrypt'], deprecated='auto'); print(pw

d_context.hash('ВАШ_ПАРОЛЬ'))"

Хеш должен быть длиной ~60 символов и начинаться с $2b$12$. Пример:

$2b$12$yPhCZhH.wtAFPri2o2xJPOGulZ8U0WXPmKWzVWmebc1xzBbBE7RQm

2. Добавьте пользователя в БД:

Экранируйте символы $ в хеше: замените $ на \$

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

INSERT INTO \"user\" (email, hashed_password, is_active, is_superuser, full_na

me)

VALUES ('user@example.com', '\$2b\$12\$ОСТАЛЬНАЯ_ЧАСТЬ_ХЕША', true, false, 'По

лное Имя');

"

 Важно: - Символы $ в хеше нужно экранировать обратными слешами: \$ - Bcrypt-хеш

$2b$12$abc... должен превратиться в \$2b\$12\$abc... - Без экранирования bash

интерпретирует $ как переменные, и хеш будет неполным

Для создания суперпользователя установите is_superuser в true:

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

INSERT INTO \"user\" (email, hashed_password, is_active, is_superuser, full_na

me)

VALUES ('admin@example.com', '\$2b\$12\$ОСТАЛЬНАЯ_ЧАСТЬ_ХЕША', true, true, 'Ад

министратор');

"

Полный пример:

1. Генерируем хеш

docker compose exec backend python -c "from passlib.context import CryptContex

t; pwd_context = CryptContext(schemes=['bcrypt'], deprecated='auto'); print(pw

10

d_context.hash('mypassword123'))"

Получаем: $2b$12$sze/sfRE5RiG8KEFh42.QOwT8hgyipXVsBqt8qb3paWuDxwJpA4gu

2. Вставляем с экранированием $ → \$

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

INSERT INTO \"user\" (email, hashed_password, is_active, is_superuser, full_na

me)

VALUES ('newuser@example.com', '\$2b\$12\$sze/sfRE5RiG8KEFh42.QOwT8hgyipXVsBqt

8qb3paWuDxwJpA4gu', true, false, 'New User');

"

Структура таблицы user: - id — автоинкрементный первичный ключ - email — уникальный email

пользователя - hashed_password — bcrypt-хеш пароля - is_active — флаг активности (true/false)

- is_superuser — флаг суперпользователя (true/false) - full_name — полное имя пользователя

(опционально)

Просмотр существующих пользователей

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "SELECT id,

email, is_active, is_superuser, full_name FROM \"user\";"

Удаление пользователя

Перед удалением пользователя необходимо проверить, есть ли у него связанные данные

(приложения, комментарии и т.д.).

Проверка связанных приложений:

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

SELECT id, name, owner_id FROM application WHERE owner_id = (SELECT id FROM \"

user\" WHERE email='user@example.com');

"

Вариант 1: Удаление со всеми связанными данными

Удаляет пользователя вместе со всеми его приложениями и сканами (используйте с осторожностью!):

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "
BEGIN;
-- Удаляем приложения пользователя (каскадно удалятся все связанные сканы)
DELETE FROM application WHERE owner_id = (SELECT id FROM \"user\" WHERE email=
'user@example.com');
-- Удаляем комментарии пользователя
DELETE FROM comments WHERE user_id = (SELECT id FROM \"user\" WHERE email='use
r@example.com');
-- Удаляем пользователя
DELETE FROM \"user\" WHERE email='user@example.com';
COMMIT;
"

11

Вариант 2: Переназначение приложений другому пользователю

Передаёт все приложения пользователя другому владельцу перед удалением:

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

BEGIN;

-- Переназначаем приложения на другого пользователя

UPDATE application

SET owner_id = (SELECT id FROM \"user\" WHERE email='new_owner@example.com')

WHERE owner_id = (SELECT id FROM \"user\" WHERE email='user@example.com');

-- Удаляем комментарии пользователя

DELETE FROM comments WHERE user_id = (SELECT id FROM \"user\" WHERE email='use

r@example.com');

-- Удаляем пользователя

DELETE FROM \"user\" WHERE email='user@example.com';

COMMIT;

"

Вариант 3: Деактивация пользователя (рекомендуется)

Вместо удаления можно деактивировать пользователя, сохранив историю:

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

UPDATE \"user\" SET is_active = false WHERE email='user@example.com';

"

Исправление пароля пользователя

Если при входе возникает ошибка hash could not be identified, значит пароль был сохранён

неправильно (не как bcrypt-хеш).

Исправление пароля:

1. Сгенерируйте новый правильный хеш

docker compose exec backend python -c "from passlib.context import CryptContex

t; pwd_context = CryptContext(schemes=['bcrypt'], deprecated='auto'); print(pw

d_context.hash('НОВЫЙ_ПАРОЛЬ'))"

2. Обновите пароль в БД (не забудьте экранировать $ → \$)

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

UPDATE \"user\" SET hashed_password = '\$2b\$12\$ОСТАЛЬНАЯ_ЧАСТЬ_ХЕША' WHERE e

mail='user@example.com';

"

12

Проверка правильности хешей всех пользователей:

docker compose exec postgres psql -U sdlplatform -d sdlplatform -c "

SELECT id, email, length(hashed_password) as hash_length, substring(hashed_pas

sword, 1, 7) as hash_start

FROM \"user\";

"

Правильный bcrypt-хеш должен иметь длину 60 символов и начинаться с $2b$12$.

13

Интеграция с CI/CD
SDLPlatform поддерживает интеграцию с CI/CD для автоматического запуска анализа безопасности

при сборке кода. Это позволяет внедрить анализ кода в каждую сборку и обнаруживать уязвимости

до развертывания приложения.

• Интеграция с GitLab CI
Для интеграции с GitLab CI необходимо вызвать API SDLPlatform и передать исходный код для

сканирования. Пример файла .gitlab-ci.yml:

stages:

- build

- security

build:

stage: build

script:

 - echo "Building the project..."

 - zip -r /tmp/sources.zip .

security_scan:

stage: security

script:

 - echo "Running security scan with SDLPlatform..."

 - curl -i -X POST -H "Content-Type: multipart/form-data" -F

"file=@/tmp/sources.zip"

https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/scan_upload

 - rm /tmp/sources.zip

allow_failure: true

• stages — определяет этапы в пайплайне (сборка и безопасность).

• build — этап сборки на котором код архивируется для дальнейшеей отправки на анализ.

• security_scan — отправка ZIP-архива с исходным кодом на сервер SDLPlatform для

сканирования.

• Интеграция с Jenkins
Для интеграции с Jenkins можно использовать команду curl, чтобы отправить код на анализ в

SDLPlatform:

o Создайте задачу (job) в Jenkins для запуска сканирования.

o В разделе Build Steps добавьте выполнение следующего shell-скрипта:

#!/bin/bash

Архивирование исходного кода

zip -r /tmp/sources.zip .

14

Отправка в SDLPlatform для сканирования

curl -i -X POST -H "Content-Type: multipart/form-data" -F "file=@/tmp/sources.

zip"

https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/scan_upload

Очистка временных файлов

rm /tmp/sources.zip

Этот скрипт архивирует исходный код, отправляет его в SDLPlatform через API, а затем удаляет

временные файлы.

• Интеграция с другими CI/CD системами
Для других систем, таких как CircleCI, Travis CI, или TeamCity, вы можете использовать аналогичные

команды для архивирования исходного кода и вызова API SDLPlatform. Пример для CircleCI:

version: 2.1

jobs:

build:

docker: - image: circleci/node:latest

steps: - checkout - run:

name: Archive source code

command: zip -r /tmp/sources.zip . - run:

name: Send to SDLPlatform

command: |

curl -i -X POST -H "Content-Type: multipart/form-data" \

-F "file=@/tmp/sources.zip" \

https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/scan_upload -

run:

name: Clean up

command: rm /tmp/sources.zip

• Получение результатов сканирования
После выполнения сканирования результаты доступны в интерфейсе приложения, а также через

API:

Прогресс сканирования приложения

curl -H "Authorization: Bearer <TOKEN>" \

https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/scan_progress

Перечень уязвимостей (в контексте приложения и общий список)

curl -H "Authorization: Bearer <TOKEN>" \

"https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/vulnerabiliti

15

es?type=sast&skip=0&limit=50"

curl -H "Authorization: Bearer <TOKEN>" \

"https://<SDLPlatform_HOST>/api/v1/applications/<APPLICATION_ID>/vulnerabiliti

es?type=sca&skip=0&limit=50"

curl -H "Authorization: Bearer <TOKEN>" \

 "https://<SDLPlatform_HOST>/api/v1/vulnerability/?type=sast&skip=0&limit=50"

curl -H "Authorization: Bearer <TOKEN>" \

 "https://<SDLPlatform_HOST>/api/v1/vulnerability/?type=sca&skip=0&limit=50"

16

Резервное копирование и восстановление данных

• Резервное копирование базы данных

Ручное резервное копирование базы данных PostgreSQL из контейнера Docker с помощью

pg_dump:

Чтобы выполнить резервное копирование базы данных, работающей в контейнере Docker,

выполните следующую команду:

docker compose exec -T postgres \

 pg_dump -U sdlplatform sdlplatform > SDLPlatform_backup.sql

o postgres – имя сервиса PostgreSQL в docker-compose.yml

o sdlplatform – имя пользователя и базы данных (по умолчанию совпадают)

o SDLPlatform_backup.sql – путь к файлу резервной копии на хосте

o Автоматическое резервное копирование: Настройте Cron для регулярного выполнения резервного

копирования базы данных. Пример для выполнения резервного копирования каждый день в 2:00:

0 2 * * * cd /path/to/monorepo && docker compose exec -T postgres pg_dump -U s

dlplatform sdlplatform > /backups/SDLPlatform_db_$(date +\%F).sql

• Резервное копирование файлов конфигурации

Кроме базы данных, важно регулярно сохранять конфигурационные файлы системы. Эти файлы

включают:

o Файлы конфигурации Docker (docker-compose.yml, docker-compose.override.yml)

o Переменные окружения (.env)

o Файлы конфигурации Nginx (nginx.conf, nginx-dev.conf)

o SSL-сертификаты (keys/ssl/)

o Файлы аутентификации (keys/.htpasswd)

Пример команды для резервного копирования конфигурационных файлов:

tar -czvf /backups/config_backup_$(date +\%F).tar.gz /path/to/configs/

17

• Восстановление базы данных

Чтобы восстановить базу данных из резервной копии, выполните команду psql внутри контейнера

Docker:

docker compose exec -T postgres psql -U sdlplatform -d sdlplatform < SDLPlatfo

rm_backup.sql

Эта команда восстановит данные из резервной копии базы данных sdlplatform.

• Восстановление файлов конфигурации

Для восстановления файлов конфигурации выполните следующую команду:

tar -xzvf /path/to/backup/config_backup.tar.gz -C /path/to/configs/

• Дополнительные рекомендации

o Периодичность резервного копирования: Определите частоту резервного копирования в

зависимости от объема данных и критичности системы. Рекомендуется выполнять

ежедневные резервные копии базы данных и еженедельные полные резервные копии

системы.

o Внешние хранилища: Храните резервные копии на внешних носителях или в облаке для

защиты от сбоев на сервере (например, AWS S3, Google Cloud Storage).

o Шифрование резервных копий: Для безопасности рекомендуется шифровать резервные

копии с помощью таких инструментов, как gpg:

gpg --encrypt --recipient your_email@example.com /path/to/backup.sql

18

Мониторинг и диагностика

• Журналирование

Настройте систему журналирования для отслеживания событий в системе и выявления проблем.

Например, используйте docker logs для журналирования событий из контейнеров:

docker compose logs -f

Для просмотра логов конкретного сервиса:

docker compose logs -f backend

docker compose logs -f ml_service

docker compose logs -f worker_semgrep

• Системы мониторинга

Интеграция с системами мониторинга, такими как Prometheus или Grafana, поможет отслеживать

состояние системы в реальном времени, нагрузку на CPU, память и другие параметры.

Пример конфигурации для Prometheus:

scrape_configs:

- job_name: 'docker'

 static_configs:

 - targets: ['localhost:8080']

• Диагностика ошибок

Проверяйте журналы ошибок Nginx и других компонентов системы.

19

Обновления и патчи

• Обновление приложения SDLPlatform

o Обновление кода приложения:

Для обновления SDLPlatform необходимо загрузить последние изменения из репозитория:

git pull origin main

Это обновит код приложения до последней версии.

o Пересборка Docker-контейнеров с учетом новых изменений:

sudo docker compose up -d --build

Эта команда пересоберет контейнеры с учетом обновленного кода и перезапустит приложение.

Для пересборки конкретного сервиса:

sudo docker compose up -d --build backend

sudo docker compose up -d --build ml_service

• Установка патчей безопасности

Патчи безопасности необходимы для предотвращения уязвимостей в системе. Обычно они могут

включать обновления операционной системы, баз данных и серверного ПО.

o Обновление операционной системы:

На сервере, где запущен Docker, регулярно устанавливайте обновления безопасности

операционной системы (например, на Ubuntu):

sudo apt update && sudo apt upgrade -y

Это обеспечит актуальность пакетов и установку критических патчей безопасности.

o Автоматическое обновление безопасности:

Включите автоматическое обновление безопасности для критических пакетов:

sudo apt install unattended-upgrades

sudo dpkg-reconfigure --priority=low unattended-upgrades

20

• Проверка состояния после обновлений

После применения любых обновлений выполните следующие шаги для проверки

работоспособности системы:

o Проверьте статус контейнеров:

docker compose ps

Убедитесь, что все контейнеры запущены и работают корректно.

o Проверьте логи системы: Используйте следующую команду для просмотра логов

контейнеров и поиска возможных ошибок:

docker compose logs -f

o Тестирование функциональности: Пройдите по основным функциям системы, чтобы

убедиться, что обновления не вызвали проблем в работе.

• Откат обновлений

Если после обновления возникли проблемы, можно откатить изменения:

o Откатить обновленные образы Docker:

Если обновление контейнера привело к проблемам, можно вернуться к предыдущей версии:

docker compose down

docker pull <previous-image-tag>

docker compose up -d

o Откат к предыдущей версии кода:

Верните предыдущую версию кода приложения:

git checkout <previous-commit-hash>

o Восстановление из резервной копии:

Если откат образов или кода не помогает, выполните восстановление базы данных и файлов

конфигурации из резервной копии (см. раздел Восстановление базы данных и Восстановление

файлов конфигурации).

21

Безопасность

• Настройка брандмауэра

Рекомендации по настройке брандмауэра: Откройте только необходимые порты для работы

платформы, например, порты для Docker, Nginx, и SSH. Все другие порты должны быть закрыты.

Пример команды для настройки правил брандмауэра на основе UFW (Uncomplicated Firewall):

sudo ufw allow OpenSSH

sudo ufw allow 443/tcp

sudo ufw enable

• SSL-сертификаты

Обновление SSL-сертификатов:

Регулярно обновляйте SSL-сертификаты для поддержания HTTPS-соединения.

• Политики паролей

Создание и внедрение сложных политик паролей:

Установите минимальные требования к длине пароля (например, 12 символов), обязательные символы

разных типов (заглавные и строчные буквы, цифры и спецсимволы).

• Аудит безопасности

Регулярный аудит безопасности:

Используйте инструменты для анализа безопасности системы, такие как Lynis или OpenSCAP, для выявления

уязвимостей и несоответствий конфигурации.

Пример выполнения аудита с помощью Lynis:

sudo lynis audit system

22

Часто задаваемые вопросы

Проблемы с запуском

Убедитесь, что установлены все зависимости и Docker настроен корректно.

Если система не запускается, проверьте логи контейнеров (docker compose logs).

Как улучшить скорость сканирования?

 Получите API-ключ для OWASP Dependency-Check и укажите его в переменной окружения — это

значительно ускорит загрузку базы уязвимостей.

Техническая поддержка

В случае возникновения проблем свяжитесь с технической поддержкой: support@sdlplatform.ru

